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A horizontal layer is heated from below and cooled from above so that  the enclosed 
single-component liquid is frozen in the upper part of the layer. When the imposed 
temperature difference is such that the Rayleigh number across the liquid is 
supercritical, there is BBnard convection coupled with the dynamics of the solidifi- 
cation interface. An experiment is presented which shows that the interfacial corru- 
gatJions that result are two-dimensional when this solid is thin but hexagonal when 
the solid is thick. A weakly nonlinear convective instability theory is presented which 
explains this behaviour, and isolates this ' purely thermal ' mechanism of pattern 
selection. Jump behaviour is seen in the liquid-layer thickness a t  the onset of 
hexagonal convection. 

1. Introduction 
Convection can be the dominant mode of heat and mass transport in many 

processes that involve the freezing or melting of material. Such is the case for the 
storage of thermal energy based on the melting of the storage material. The 
solidification in moulds of liquid metals or alloys and the growth of crystals from melt 
or aqueous solutions are cases where double-diffusive processes may be present, so 
that there is the need to  understand the interaction in multicomponent systems. 
Although the effect of convective transport in all these processes has been the subject 
of many experimental and theoretical investigations (see e.g. Foster 1969 ; Farhadieh 
& Tankin 1975; Fischer 1981; Saitoh & Hirose 1980, 1982; Hurle & Jakeman 1981; 
Marshall 1981), fundamental uncertainties exist in the prediction of the progress and 
the shape of the freezing or melting front. 

The growth of crystals from binary solutions is a process where the interaction of 
adverse temperature and concentration gradients may generate unwanted interfacial 
instabilities during unidirectional solidification (Mullins & Sekerka 1964 ; Coriell et al. 
1980 ; Coriell & Sekerka 1982). These instabilities generally deform the initially planar 
solid-liquid interface and lead to a cellular pattern of microsegregation. The 
interaction ofthe temperature and Concentration fields near a progressing solidification 
front gives rise to the so-called morphological instability (Mullins & Sekerka 1964) 
in which convective effects are usually negligible. Weakly nonlinear theories 
(Wollkind & Segell970; Wollkind & Kaissi 1974; Sriranganathan, Wollkind & Oulton 
1983) lead to the prediction of hexagonal patterns for the resulting interfacial 
corrugations. 
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FIGURE 1 .  Schematic drawing of partially solidified liquid layer. 

Interfacial instabilities may also originate from the onset of solutal or thermal 
convection in the liquid phase if the gradients are parallel to the gravity vector. 
Stability criteria based on linear analyses for solutal-driven convection have been 
given for various conditions by Hurle, Jakeman & Wheeler (1982, 1983). They also 
analyse the complex system of interacting morphological instabilities and solutal 
convection and show that stationary and oscillatory (overstable) perturbations of the 
temperature, concentration and velocity may occur when the critical conditions are 
exceeded. 

In  the present work we wish to focus on systems in which thermal convection and 
corrugations of a freezing/melting interface are strongly coupled. We consider a 
horizontal layer of a singk-component liquid, cyclohexane, which is transparent, has 
no anomalous physical properties near its freezing point and whose thermal variations 
in physical properties are negligible. The layer is heated from below and the boundary 
temperatures adjusted so that the upper part is frozen and there is a solid-liquid 
interface. Depending on the Rayleigh nuinber of the liquid, the heat in the liquid is 
transferred either by conduction only or by conduction and convection. The natural 
convection generally will occur in ccllular form as i t  is observed in BBnard convection. 
If the heat is transported uniformly by conduction only, the interface between the 
solid and liquid layer will be planar; however. it will bewme corrugated if natural 
convection occurs in the liquid. The situation is sketcahed in figure 1. 

Work on related systems is scarce. Yen (1968, 1980) performed experiments on 
melting ice blocks underneath or above a heated horizontal layer of water. He found 
regular patterns of corrugations a t  the ice surface. When the ice block was melted 
from below, he observed an array of small 'inverted hemispherical cells' a t  the ice 
surface. A pattern of axisymmetric troughs and crests occurred at the ice surface when 
the ice block was melted from above. No explanation was given for the occurrence 
of the different shapes of the interface deflections. The density anomaly of water a t  
4 "C may have had a major influence on the pattern f0rmation.t Pantaloni et al. (1977) 
have obtained hexagonal planforms of solid-liquid interfaces in Rayleigh-Benard 
experiments conducted with molten salts. They attribute the appearance of such 
patterns to the strong thermal variations of the viscosity in the fluid layer close to 
the solidification front. Such non-Boussinesq efl'ects have been shown by Palm (1960), 
Segel & Stuart (1962), Segel (1965) and Busse (1967) to give rise to hexagonal 
convection in uncoupled systems. Pantaloni ef aZ. (1977) implied that such convective 

t Many papers are devoted to the details of the onset of' convection in icewater systems; these 
are summarized by Seki, Fukusako & Sugawa'ra (1977).  
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FIGURE 2. Experimental apparatus, layer height 4.18 mm or 5.04 mm. 

patterns in the liquid generate the hexagonal corrugations at  the solid-liquid 
interface. 

It is the aim of the present investigation to identify the patterns of convective flow 
and interfacial corrugation, determine the parametric ranges in which different 
patterns occur and study the basic mechanics of the interfacial-flow interactions. I n  
$2 we report on experiments that identify the corrugations of the interface. I n  $3 
we perform a weakly nonlinear analysis of the coupled convective/interfacial system. 
We compare the theory and experiment and explain the mechanism of the pattern 
selection and the observations of the experiments. In  $4 we summarize the study. 

2. Experiments 
2.1. Apparatus and procedure 

The test apparatus is displayed schematically in figure 2. The test volume is bounded 
above and below by square copper plates of dimension 287 x 287 mm. The sidewalls 
consist of 5 mm thick glass plates. The distance between the horizontal plates is varied 
by placing small ceramic spacers of low heat conductivity at the rim of the plates. 
Spacers of height 4.18 mm and 5.04 mm are employed in the experiments. The 
manufacturing tolerances of both the flatness of the copper plates and the spacer 
heights are less than kO.02 mm. For temperature control the copper plates are put 
in direct contact with a system of meandering cooling channels a t  their lower and 
upper sides respectively. Coolant is provided from two high-precision thermostats 
of temperature deviation A T  = kO.01 "C. The whole test chamber, including the 
connecting pipes to the thermostats, is insulated against external temperature 
perturbations by Styrofoam plates and foam-rubber hoses. 

For measuring the temperatures a t  the horizontal boundaries two Ni-Cr-Ni 
thermocouples are positioned in the upper copper plate and one in the lower plate, 
each 0.2 mm from the surface adjacent to the test volume. The same zero-point 
thermostat serves as a reference instrument for all thermocouples. Temperature 
fluctuations of less than kO.01 "C are assured. The thermoelectric voltage is amplified 
by differential amplifiers by a factor 1000 and displayed by a digital voltmeter. 

Before starting the actual tests the thermocouples are calibrated by correlating the 
signals to the melting temperature of the test liquid, cyclohexane. The material 
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,dL) = 790.5 kg/m3, 

A(L) = 0.127 W/mK, 

T, = 6.38 "C, 

p = 1.26 x 1 W3 N s/m2 
a = 1.17 x 10-3 K-1. cbL) = 1794 .J/(kg K),  

A(s)/A'L' = 1.07, 

TABLE 1. List of material properties 

properties of this liquid are listed in table 1. The calibration is performed by first 
reducing the temperature a t  the upper copper plate until a thin layer of solidified 
material of less than 0.1 mm is formed a t  the surface. Then the temperature is slowly 
raised until only a few tiny patches of the solid are seen on the surface. During this 
process the temperature of the lower copper plate is kept constant a t  6.9 "C. An 
equivalent procedure is used for calibrating the thermocouple in the lower plate. This 
calibration is essential for obtaining the two main measured quantities, the 
temperature differences To - T, and T, - q. 

Cyclohexane is chosen as the test liquid since the mat,erial properties are well known 
and no anomalies in material properties exist in the range 3 4 ° C  where the 
experiments have been carried out. Moreover, cyclohexane is transparent and 
exhibits a fixed melting temperature. 

The structure of the solidification interface is directly viewed through observation 
slits a t  all four glass sidewalls. The reflection of this structure by the mirror-quality 
polished surface of the lower copper plate is an essential aid for the direct observation. 
However, for a photographic documentation the upper copper plate is removed from 
the test apparatus a t  certain fixed temperature levels of the lower and upper plates. 
Photos are then taken of the corrugated solidification interface under favourable 
lighting conditions. The removal of the plate must be rapid in order to avoid 
unwanted sublimation of the cyclohexane or condensation of water vapour from the 
air. Typically, photographs were taken between 30-60s after the start of the 
dismantling of the apparatus. 

2.2.  Observations 

We shall relate our observations to the case of pure heat, conduction in which the 
solid-liquid interface is planar and its position is a t  z = h,. This state is analysed in 
43, where we find that 

Here A(s)  and A(L) are the thermal conductivities for the solid and liquid respectively, 
and for small A ,  A-l turns out to  be the equivalent Biot number for the heat transfer 
from the liquid to the solid. Notice that A also measures the amount of solid present. 

We also introduce the Rayleigh number R to measure convection in the liquid. Here 

where a is the volume expansion coefficient, g is the magnitude of the gravitational 
acceleration, K ( ~ )  is the thermal diffusivity and u is the kinematic viscosity. 

I n  all experiments we keep T, fixed so that the temperature difference To - T, is fixed, 
and we vary the temperature q of the upper boundary. Thus, unlike the classical 
experiments in BBnard convection, the Rayleigh number is varied through changes 
in hL, not through changes in the temperature difference. 
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Each experiment begins with a value of TI giving convection in the liquid. TI is 
then reduced slowly and in small steps. When reaches a value where the interface 
becomes planar, the state of pure conduction has replaced the state of convection. 
From here the experimental run is reversed by slowly increasing the temperature 
in small increments. keeping T, fixed, until the initial state of convection is reached 
again.? Different experimental runs lasted typically between 2 and 4 weeks. The rates 
of stepwise change of the temperature a t  the upper plate was 0.5 K/min, the state 
a t  each measuring point was stationary for a t  lcast 90 min before the data were 
taken. 

Photographs of corrugated solid-liquid surfaces are shown in figure 3. Depending 
on the thickness of the solid layer, different patterns occur. If the solid layer is very 
thin, i.e. about 0.1 mm or less, roll-like patterns appear as shown in figure 3(a). A 
hexagonal pattern is generated for solid layers whose thicknesses are comparable with 
the depth of the liquid layer as shown in figure 3(c). I n  an intermediate range both 
polygonal and roll-like patterns are observed to coexist as displayed in figure 3(b). 

The different states realized during two runs of experiments are shown in the graph 
of figure 4. Each state is characterized by two parameters R and A. For the upper 
curve the total layer depth h = 5.04 mm, whereas for the lower curve h = 4.18 mm. 
The range of different patterns of the solidified surface is characterized by the 
parameter A .  We find two-dimensional patterns for A < 0.05 and hexagonal patterns 
for A > 0.16. For the intermediate range 0.05 < A < 0.16 a mixed pattern of rolls 
and polygons is observed. The particular experimental trajectories obtained are due 
to  the fact that variations in cause both Rand A to vary simultaneously. Generally 
the different states could also be arranged under the condition of a constant Rayleigh 
number, though the temperatures a t  both copper plates would have to be varied 
simultaneously. As mentioned earlier, for reasons of experimental convenience, only 
the temperature of the upper plate was actually changed. 

An analysis of the experimental errors has shown that the values of A for the 
transition between the different patterns are accurate within the following bounds : 

0.02 < A < 0.08, roll-pattern/mixed-pattern transition ; 
0.13 < A < 0.19, mixed-pattern/hexagonal-pattern transition. 

Our experimental observations lead to a physical mechanism for the generation of 
the patterns of corrugation that couple convective flow with interface deflection. 

If the Rayleigh number of the liquid layer exceeds a critical value, cellular 
convection enhances the heat transfer in the liquid layer, which results in a partial 
melting of the solid. Since the convection cells are characterized by zones of up-flow 
and down-flow, the melting is not uniform. More solid is melted near the zones where 
warmer fluid rises toward the interface compared with zones where cold fluid sinks 
toward the lower boundary. This effect is displayed schematically in figure 1 .  It 
results in a formation of crests and troughs at the interface as observed in figure 3.  

The surface deflection can lead to a degree of vertical asymmetry sufficient for 
hexagonal convection to be created, as shown by Davis & Segel (1968) for fluid-fluid 
interfaces. Our experimental observations indicate that this is the case when A is 
large. When A is small enough we see only roll-like patterns. We next outline a theory 
based on these ideas. 

t In temperature ranges where qualitative changes in the flow behaviour were expected, the 
were supplemented by cyclic variations in order to fix monotonic variations in the temperature 

the temperature threshold of transitions. 
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FIGURE 3. Photographs of corrugated solid-liquid interfaces : ( a )  roll-like pattern ; 
( b )  mixed polygonal-roll pattern ; (c) hexagonal pattern. 



Pattern selection in systems coupling convection and solidiJication 139 

R 

1 2 000 

10000 

8 000 

6 000 

4000 

2 000 
/ 

Rc 
0 

Rolls 

I 
Range of transition 

Hexagons 

' h  j 
Figure 3 (6) 

Figure 3(6) 

- I I1 

* 
0.5 I 1.5 

0.05 1 A 
0.16 

FIGURE 4. Regime diagram on the ( R ,  A)-plane: labels I-V refer to critical values listed in (3.36); 
0, rolls, 0 ,  rolls and polygons; 0 ,  hexagons; x , state of rest. 

3. Theoretical model and analysis 
3.1. Formulation 

Consider the configuration sketched in figure 1 where the horizontal parallel plates 
a t  z = 0 and z = h have infinite horizontal extent. The lower plate at z = 0 is fixed 
a t  the temperature T = To while the upper plate a t  z = h is fixed a t  temperature 
T = q. The material between the plates is a single-component liquid if T > T, and 
it is a solid if T < T,. The layer is heated from below so that TI < T, < To, and there 
is a solid-liquid interface a t  z = 7 with 0 < 7 < h. The material properties are the 
density po, the specific heat c p ,  the thermal conductivity A,  diffusivity K ,  kinematic 
viscosity v, and the volume expansion coefficient a ;  superscripts S and L will be used 
to designate solid and liquid properties when required. 

The coupled effects of buoyancy-driven convection and phase changes will be 
described by the heat equation in the solid and the Boussinesq equations (Mihaljan 
1962) in the liquid. A t  the interface at z = 7, we assume that there is no undercooling,+ 
so that 

(3.1) T ( L )  = ~ ( s )  = T 

(3.2) 

S '  

The jump in heat flux is balanced by the production of latent heat L,  

Po (S)L7, = [A(s)VT(s) - A(L)VT(L)] - n 
t The Gibbs-Thompson effect includes the effect of interfacial energy y by replacing (3.1) by 

T(L) = TCs) = T, + ( y / L )  K ,  where K is twice the mean curvature of the interface. We neglect this 
effect henceforth, though it is easily included. 
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where n is the unit normal vector to the interface : 
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n = (-%, - v y >  1 )  ( 1  + % + T y )  2 -4. 

piL)v-n = [piL)-pis)] (1  + y i + r ; ) - : y t  

(3.3) 

Subscripts x, y, z ,  t represent, partial differentiation. The interface is non-mobile but 
deformable, so that there is the kinetic condition 

(3.4) 

(3 .5)  
and the no slip condition 0 .  t(l) = 0' t ( 2 )  = 0 

where t ( l )  and t (2)  are unit tangent vectors: 

t(l) = ( 1 + &  -%ry>vz)( l+r:+vy)  2 -4 ( 1 +v;)-i, 

t ( 2 )  = (0, 1 , vy) (1  + v;)-B. 
( 3 . 6 ~ )  

(3 .6b )  

The governing system possesses a static equilibrium solution in which the interface 
is planar a t  z = 7 = h,, the velocity vector v is identically zero, the pressure p is 
hydrostatic and the temperatures are purely conductive. Here 

x, y, 2 - h,, 

U , V ,  w - [K'L)OlghL(TO-Ts)/v]t,, 

1 

t - h L / f P ' ,  

p - .piL) W/hL,  

The fields (3.7) satisfy (3.1), T(" = 

condition (3 .2)  further constrains the parameters so that 
a t  z = h and !Z"" = a t  z = 0. The flux 

(3.10) 

where k = (0,0, 1 ) .  (3.111%) 
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Here (3.11 a-c) a.re the Boussinesq equations for the liquid and equation (3 .11d)  gives 
the thermal field in the solid. The following non-dimensional groups emerge : 

( 3 . i 2 a ,  b)  

(3 .12c ,d ,  e )  

The main parameters that govern steady convection in the present system are R and 
A.  Notice that owing to (3 .8) ,  a change in, say, causes both A and R to change 
simultaneously, the latter owing to the variation in h,. 

I n  non-dimensional terms, the basic state has v = 0 ,  p hydrostatic and 

!FL) = 1 - 2  (0 < z < 1 )  Fs) = h - l ( i - z )  ( 1  < z < 1+A) .  (3 .13a ,b)  

3 .2 .  Weakly rionlinear steady convection 

We wish t o  consider the basic state in which a slight rise in the temperature of the 
upper plate causes a slight melting of the solid. The increase in h,, given that - T, 
is fixed, causes the Rayleigh number to pass through its critical value R, leading to 
steady cellular convection of amplitude e. We seek to  describe this weakly nonlinear 
steady convection using a perturbation theory, first described by Malkus & Veronis 
(1%8), by writing 

v = O + E V 1 + € 2 V 2 +  ... , p =ji+€p1+“2pz+ ...) (3 .14a,  b )  

(3.14 c ,  d )  TcL’ = F(’) + €TIL) + t2T!jL) + . . . , T(‘) = p(’) + eTis) + s2T!jS) + . . . , 
71” i+€yl+€2y2+ .... 

and representing 
R = R,+eR,+e2R2+. .  

(3.14e) 

(3 .15)  

for all other parameters fixed. We substitute (3 .14)  and (3 .15)  into (3 .11)  and equate 
to zero coefficients of like powers of E .  

At order unity u e  reobtain the basic state, At order e we obtain the linear stability 
problem under neutral conditions. We separate variables using normal modes : 

(3 .16a)  (W,, Ti”, ?IS); TI)  = (M<(X),  TfL’(z), T$S’(Z), H , )  @(z, y), 

where the planform function @ satisfies 

Qi,, 4- cDyg = - k:w (3.16 b )  

and the usual normalization condition 
- 
@ 2 =  1. (3 .17)  

Here the overbar denotes the horizontal avcrage over one period in x and y ,  i.e. over 
one cell, and k: is the overall wavenumber. The horizontal velocity components u1 and 
u1 can be written as 

(3.18) 

where I3 = d/dz. Note that the planform function is arbitrary according to the linear 
theory, but is later determined bj- the stability properties of the weakly nonlinear 
steady-convection solutions. 

1 
(% fll) -- p D W )  (@Jz, Y), @y(x3 Y))? 
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The temperature field in the solid satisfies V2TIs) = 0 along with TIs)(x, y, 1 + A )  = 0 

! p ( Z )  = A-lH, A ( [ )  (3.19) 

and TiS)(x,  y, 1 )  = h-ly. We find that 

where 
2 - 1  sinhkA(1-c) 

A sinh kA ‘ 
c=-- and A ( c )  = (3 .20a,  b )  

The boundary conditions on temperature field in the liquid are the temperature and 
heat-flux conditions (3.1 1 g,  h) linearized about z = 1. These have the form 

TiL) ( l )  = H ,  and D T i L ) ( l )  = -9 Hl . (3.21 a ,  b)  

On the right-hand side of (3.21 b )  we have used (3 .20) ,  so that 

(3.22) 

The linear stability problem in the liquid governs BBnard convection under neutral 
conditions, which is conveniently written in an abstract notation. We follow Davis 
& Segel (1968) and write the four-vector 

(3.23 a )  

0 0  0 0 0 0  

0 v= [ O and M =  [ O  0 0 0 1 ’  ‘1 ( 3 . 2 3 6 , ~ )  L =  

0 v2 0 0 1 0  

In  t,erms of notation (3 .23)  the linear stability problem in the liquid written using 
the primitive equations can be posed as follows : 

{L+@M).Y1- = O ,  V - V ,  = O .  (3.24a, b )  [:;I 
with the boundary conditions 

u1 = v1 = w1 = TiL) = 0 on z = 0 (3.24 c )  

and (3.24 d )  

The last condition in (3 .24d)  is obtained by eliminating H ,  (or equivalently 7 , )  
between ( 3 . 2 1 ~ ~ )  and (3 .216) .  

The conditions (3 .24d)  show that a t  the onset of convection the solid-liquid 
interface behaves like a planar rigid solid that is an imperfect thermal conductor. As 
L4 increases, this solid becomes a worse conductor, and as A-tO, 9-1 - A .  so that 
as the solid disappears the interfaee becomes a perfect thermal conductor. 

The system (3 .24)  has a minimum critical Kayleigh number R, which corresponds 
to k = k,. I n  figures 5 and 6 we plot these as functions of A as obtained by a 
straightforward numerical integration. These are obtainable from the calculations of 
Kield (1968), even though we have a wavenumber-dependent ‘Biot’ number 9. I n  
all theory that follows we take k = Ic, for each given B. 

u1 = v1 = w, = 1’;;) + 9 T I L )  = 0 on z = 1 .  
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FIGURE 6. Critical wavenumber as a function of A .  

It is easy to see that DT,(I) < 0, so from (3.21b) we have H I  > 0. Thus there is 
a surface elevation ( H I  > 0) above a rising (W, > 0) convective current. This is 
consistent with the idea that the rising current is warm (T,  > 0) so that more solid 
is melted here than a t  neighbouring points. 

If we write the scalar product of two vectors YA and YB as 

ri  
< ~ A , K J = J - [  u A u B + V A  V B  + u)A W B  + TLL’ThL)] dz, (3.25) 

then using the methods of Davis & Segel (1968), i t  is straightforward to show that 
the system (3.24) is self-adjoint. 

We now turn to the O(e2) terms of the perturbation theory. In  the solid, V2TiS) = 0 
with Tis) = 0 at z = 1 + A  and !Pis) = h-lq, - T$s)ql at z = 1.  Thus 

Tp(& y, z )  = G-lvz- q’ l*= lv1>  4 C ) >  (3.26) 

and we find that the O(e2)  Stefan condition becomes 

Tg’(z, y, 1 )  = - = w / Z + ~ v : ) .  (3.27) 

Hence we have used (3.19), (3.20), (3.22) and (3.26) as well as earlier relations on 
boundary conditions on the  liquid at z = 1. Finally, we use Tis) -h-lvz + Ti:)ql = 0 
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on z = 1 to eliminate q2 and find that Ti.) + LYTLL) = 0 a t  z = 1 ; here we have used 
(3.21 b ) .  

At order e2 the governing system in the liquid has the form 

v * v 2  = 0. (3.28 b)  

The boundary conditions at z = 0 are 

u2 = v2 = w2 = TiL) = 0 on z = 0. ( 3 . 2 8 ~ )  

The boundary conditions a t  z = 1 are obtained by referring the conditions on the 
deflecting interface to its mean position z = 1 and using the O ( F )  conditions for 
simplifying the expressions. The final form requires a good deal of algebraic 
manipulation and leads to the following : 

(3.28d) 

We now apply the Fredholm alternative and take the scalar product of ( 3 . 2 8 ~ )  with 
‘y,. From Davis & Segel (1968) we see that (i) the pressure-gradient terms vanishes, 
(ii) the nonlinear term vanishes, (iii) the terms involving the operator inversion, using 
Green’s theorem, of L +I@M vanish except for the boundary integrals. In the latter 
terms we use conditions (3.28c, d )  to reduce these. The result take the form 

@R,(Y,,M.FY,) = - Y ~ [ U ; ~ ( X , ~ ,  i ) - tW; , iX,y ,  I)]. (3.29) 

We now use the definitions of Yl and M from (3.23) and the scalar product (3.25) 
to rewrite (3.29) as 

(3.30) 

Finally, we introduce the normal modes (3.16), use (3.18) and eliminate H ,  using 
(3 .21b)  to obtain 

(3.31) 
@LP[DTiL)(1)] [D2H;(1)I2 a(@;+ a;) 

a2 . R, = 

k4 s,‘ W, TiL) dz 

The work of Schluter, Lortz & Busse (1965), Segel (1965) and Busse (1967) has 
shown that stability considerations lead to the appearance of either roll cells or 
hexagons and that this nonlinear competition is contained in the following special 
form for 0: 

@(x, y)  = Y cos i k y  cos~2/3kx + 2 cos ky, (3.32) 
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FIGURE 7 .  First-order correction R, of the Rayleigh number as a function of A 

where rolls have Y = 0,Z $. 0 and hexagons have Y = f 2 2 .  The normalization (3 .17)  
requires 

a y 2 + 1 2 2  2 = 1 ,  (3 .33)  

so that Z = k 4 2  for rolls and 2 = & 4; for hexagons. 
The integration, giving the horizontal average, is zero for rolls, so that 

R, = R$) = 0 in this case, while for hexagons it gives - k i d 6 k 2 .  Figure 7 shows 
R,  = RIH) for hexagons with 2 > 0 as a function of A.  Here we have used the 
numerically computed eigenfunctions W, and TIL) to  evaluate (3 .31) ,  and we have 
used the normalization max W,(z) = 0.93848 kE(A). 

At this stage we could obtain the O(e2)  solutions, examine the O(e3)  perturbation 
terms and formally obtain R,(A) for arbitrary A ;  this would then give us 

(3.34 a )  

for hexagons and R(R) - R ,  + RiR)e2 (3.34 b )  

for rolls. However, if A is not small, there is no justification for the retention in ( 3 . 3 4 ~ ~ )  
of the term RiH)e2, since i t  is obtained by perturbation theory in E ,  which makes it 
formally negligible compared with RiH)e. On the other hand, if A is small,? so that 
a double expansion in E and A is permissible, then all three terms can be retained. 
Thus i t  is then justifiable to write 

R(H) - R, + RiH)e + RiH)e2 

R iH) (A)  - RiH)(0)  = C2Rc[0.89360+0.04959 P-l+0.06787 F’], (3 .35a)  

RiR)(A)  - R( 2R) ( 0) = C2 R,[0.69942-0.00472~1+0.00832P-2], (3.35b) 

R J A )  - RJO) = 1707.762, k,(A) - k,(O) = 3.119 (3.35c, d )  

where C2 = @ jol W,(z) TiL)(z) dz = 2904.4. (3.35 e )  

t Equivalently, we could write A = .&, where x =  0(1) as e+O,  and perturb in the single 
parameter e .  I n  this case for hexagons we would get R - R, + (R,, + R,, x) 2, where R,, would be 
equivalent to the A = 0 result of  Schliiter et al. (1965) and R,, would be our RiH)(0); the  results 
are thus identical. 
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The values given in (3.35a,b) were vomputed by Schluter et al. (1965); we have 
inserted factors 22, and G2 to account for the differences in non-dimensionalization 
and eigenfunction normalization betwecn Schliiter et al. and us. We do so in (3.36) 
below as well. For small A, 3-l = O ( A ) ,  so that  (3.31) gives, consistent with figure 7 ,  

II$H’(A) - R i H ’ ( 0 )  = -42.0Rc(0)A. (3.35 f )  
From now on we use the symbol R, to denote R,(O). 

3.3. Preferred mode 

The foregoing computation for steady convection leads to an infinite number of 
convective states, one for each @, which need to be distinguished by stability 
considerations. This has been done generally by Busse (1967) for cases where R, is 
small and generated by thermal variations in fluid properties. His stability analysis 
applies directly to our present work if A is small,? in which case four ranges of Rayleigh 
numbers exist for stable convective states. We can write these as follows: 

(pure conduction only); 
[RiH)l2 
4RiH) 

I O<R<R,=R,-- 

I I1 R, < R < R, (pure conduction or hexagonal convection); 

(3.36) I 3R$R)[R(1H)]2 
C4R2, Li 

I11 R, < R < R, = R, -k (hexagonal convection only) ; 

[ 9 R p  - 3C2KC L,] [R$H’12 
IV  R, < R < R, = R,+ 

C4 R2, L2, 
(hexagonal convection or roll convection only) ; 

V R > I I ,  (roll convection only); I 
where from Busse (1967) we have 

L, = 0.29128+0.081471‘-1+0.08932 F2. (3.37) 

These ranges from the small-A theory have been drawn in figure 4 for P+ GO. For 
purposes of clarity we have shown the curves for values of A larger than those 
appropriate for the perturbation theory. It is seen that the ranges divide the 
(R ,  A)-plane into sectors related to the observations though quantitative comparisons 
are not possible. 

I n  range I pure conduction is the only stable steady state. In range I1 pure 
conduction is locally stable, but there can be a jump transition to stable hexagonal 
convection as indicated in the bifurcation plot of (3.34) on figure 8. Here a path a-+ b 
of increasing R results a jump to point c.  I f  R increases further, hexagonal convection 
is maintained. However, if R is decreased along c+d then there is a jump down to 
pure conduction. Thus abcd constitutes a hysteresis loop. Since R, < 0 the hexagons 
that occur have upflow at their centres. Hexagons having downflow a t  their centres 
are unstable. I n  range I11 the same hexagons persist. I n  range IV both rolls and 
hexagons are stable, while in range V only rolls can persist. Again the path a‘b‘c‘d’ 
constitute a hysteresis loop, this time involving jumps between hexagonal and roll 
convection. 

t The interface deflection and the phase changes give rise to new local time derivatives (in the 
kinematic and Stefan boundary conditions) compared to the classical case. When A is small these 
terms do not alter the stability results of Busse (1967) nor the ranges listed above. However, if 
A is not small, then one does not know the result. 
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FIGURE 8. Sketch of the dependence of the amplitude on the Rayleigh number for rolls and 
hexagons, and bounds of stability ; hatched curves mark unstable branches. 

3.4. Mean  interface position 

The nonlinear theory for small A gives ranges for stable hexagons, rolls or both as 
listed in (3.36). The theory shows that the first hexagons seen (as R is’increased) should 
occur through a jump as shown in figure 8. Thus a jump occurs somewhere between 
R = R, and R = R, and has magnitude between RIH)/2RiH) and RiH)/RiH). Given 
such a jump in c, there should be an accompanying jump in convective heat transport 
(Nusselt number), which in turn would result in a jump in the mean position of the 
solidification interface. 

We can examine this jump for small A by first solving for the O(cz)  mean 
temperature T!jL). It satisfies 

D2TLL) = @DIW,TIL)], TiL)(0) = 0, DT!jL)(l)+=!Z’TLL)(l) = 0. 

(3.38a, b ,  c )  
We solve (3.38) to find that 

(3.39) 

We now average (3.27) over x and y to obtain 

DT!jL)(l) = -=!Z’(?j2+=Y2) = -=!Z’(?j,+=!Z’-’[DTiL)(1)]2), (3.40) 
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FIQURE 9. Second-order correction ?jz for the average liquid-layer height as a function of A 

where we have used (3 .16a) ,  (3.17) and (3.216). We now combine (3.39) and (3.40) 
to obtain 

(3.41) 

The relation (3.41) is plotted in figure 9;  for small A ,  ?jz - 5798. Now, since 
11 - ql + e2y2, q - 1 + &j2, and e jumps in the range 

1 RiH) RiH) 
( 2 p ; p )  

then for A+O the mean jump 7- 1 = O(A3) .  Since q2 > 0, the onset of hexagonal 
convection is accompained by a jump in mean thickness of the liquid layer. 

3.5. Experimentalltheoretical comparisons 

We have posed a theory for convection initiated by a slight melting of a solid and 
the subsequent convection coupled to the deflection of an interface sustaining changes 
of phase. 

The linearized stability theory shows that in spite of the interface temperature 
being known a priori, the disturbances see an imperfectly conducting solid medium 
a t  z = 1. Linearized theory gives R J A ) ,  which decreases by about 12.5% as A 
increases from zero to infinity. The critical wavenumber k,(A) decreases by about 
9.7% over the same range. These values are consistent with the experimental 
observations. For example, our measurements of the hexagons in figure 3 ( c )  gives 
k = 3 . 0 f 0 . 2  for R = 3300 and A = 0.36, while the linear theory for 
R = R,(0.36) w 1520 and k(0.36) w 2.9. The rolls of figure 3(a)  have k = 2 .5k0 .1  for 
R = 7500 and A = 0.03, qualitatively consistent with the wavenumber decreasing 
with increasing R > R,. 

The nonlinear theory for small A gives ranges for stable hexagons, rolls or both 
as listed in (3.36). The range of predicted hexagons approaches zero with A consistent 
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with the experimental observation that only roll cells are seen for small enough A 
( A  = 0.05). For the value of A = 0.05 stable hexagons should be in the range 

R-Rc 
-4.2 x 10-4 < ~ < 1.3 x lo-,, 

RC 
(3.42) 

which would be difficult to see by present techniques. However, when A is large, the 
range of stable hexagons should be large, consistent with the experimental obser- 
vation that for A large enough ( A  = 0.16), well-formed hexagons or mixed polygonal 
states are always seen. For the value A = 0.16 stable hexagons should be in the range 

R-R, 
-4.3 x 1 0 - 3  < ~ < 1.3. 

Rc 
(3.43) 

This range significantly exceeds the expected range of validity a t  our perturbation 
theory so that hexagons would be predicted ‘always ’ ! 

The theory shows that the first hexagons seen should be present due to a jump 
from the conduction state. Figure 8 shows a bifurcation diagram of (3.34) for 
hexagons and rolls. As  R is increased, the pure-conduction state loses stability 
through a jump of magnitude between +RiH)/RkH) and RfH)/RiH), which is O(A)  for 
small A .  We have no experimental observations of such jumps in the present set-up, 
since viewing from the side of a thin, wide layer is difficult. However, in a subsequent 
experiment designed to focus on side-wall effects we have used identical materials 
but now a chamber having depth 10 mm and horizontal dimensions 20 mm x 200 mm. 
I n  these experiments A = 5.0 and we observe from the side a rapid jump in the mean 
position of the interface upon the onset of convection; the liquid layer doubles its 
thickness a t  the onset of convection. This is not an effect of changes of volume of the 
material upon solidification but one of the dynamical consequences of subcritical 
bifurcation. 

We note that there is an alternative mechanism for the creation of hexagonal 
patterns as discussed by Palm (1960) ; Segel & Stuart (1962) ; Busse (1967) and Davis 
& Segel(1968). Here thermal variations, say Ap,  across the liquid layer, of each fluid 
property p, having mean value p,,, lead to R, proportional to A,u/,uo. On one hand, 
cyclohexane closely satisfies the conditions of the Boussinesq approximation, so that 
Ap/p,, is very small within the temperature change - T,  z 1 K. On the other hand, 
since To - T,  is fixed in the present experiment, independently of A ,  theories based 
on non-Boussinesq effects would predict a range of hexagons independent of A 
contrary to our observations. Thus such non-Boussinesq mechanisms are negligible 
in the present case. 

4. Conclusions 
I n  this paper we have examined a single-component liquid that solidifies at a known 

temperature T,. The configuration involves a layer heated from below and cooled from 
above. A slight melting of the solid initiates steady thermal convection coupled to 
the deflection of an interface a t  which the changes in phase occur. 

We have discussed an experiment in which large values of A (the ratio of solid to 
liquid thicknesses) lead to hexagonal convection that is readily observed, while small 
values of A lead to  roll-like patterns. Presumably, stable hexagons do exist, but only 
in a Rayleigh-number range too small Lo be resolved experimentally. 

We have discussed a theory for which small values of A are required since the 
perturbation theory is questionable when A is large. 
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We have compared experimental observation with theoretical prediction and found 
very good qualitative agreement in that (i)  hexagonal convection and solid-liquid 
interface patterns predominate a t  large A ,  while two-dimensional convection and 
patterns are seen a t  small A ; (ii) the wavenumber of the cells is consistent with a 
linear stability theory; (iii) the onset of hexagonal convection is accompanied by a 
jump in the mean position of the solid-liquid interface, so that the liquid depth 
suddenly increases. 

The above agreement gives confidence that the coupled convective/phase-change 
system considered gives rise to hexagonal symmetries and that these states are driven 
by alterations in heat transfer a t  the interface due to interfacial deformation. Further, 
the prediction of upflow in the centres of the hexagonal cells fits the view that the 
phenomena are well-modelled by the theory. This ‘purely thermal ’ mechanism should 
be present in other more complicated solidification systems in which buoyancy effects 
are appreciable. 

The authors gratefully acknowledge the assistance of P. Damm during the 
performance of the experiments. S.H.D. was partially supported by a contract with 
the Army Research Office, Applied Mathematics Program. 
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